ad

Thursday, 3 October 2013

Computable and uncomputable sets

Computable and uncomputable sets

Recursion theory originated in the 1930s, with work of Kurt Gödel, Alonzo Church, Alan Turing, Stephen Kleene and Emil Post.[1]
The fundamental results the researchers obtained established Turing computability as the correct formalization of the informal idea of effective calculation. These results led Stephen Kleene (1952) to coin the two names "Church's thesis" (Kleene 1952:300) and "Turing's Thesis" (Kleene 1952:376). Nowadays these are often considered as a single hypothesis, the Church–Turing thesis, which states that any function that is computable by an algorithm is a computable function. Although initially skeptical, by 1946 Gödel argued in favor of this thesis:
"Tarski has stressed in his lecture (and I think justly) the great importance of the concept of general recursiveness (or Turing's computability). It seems to me that this importance is largely due to the fact that with this concept one has for the first time succeeded in giving an absolute notion to an interesting epistemological notion, i.e., one not depending on the formalism chosen.*"(Gödel 1946 in Davis 1965:84).[2]
With a definition of effective calculation came the first proofs that there are problems in mathematics that cannot be effectively decided. Church (1936a, 1936b) and Turing (1936), inspired by techniques used by Gödel (1931) to prove his incompleteness theorems, independently demonstrated that the Entscheidungsproblem is not effectively decidable. This result showed that there is no algorithmic procedure that can correctly decide whether arbitrary mathematical propositions are true or false.
Many problems of mathematics have been shown to be undecidable after these initial examples were established. In 1947, Markov and Post published independent papers showing that the word problem for semigroups cannot be effectively decided. Extending this result, Pyotr Novikov and William Boone showed independently in the 1950s that the word problem for groups is not effectively solvable: there is no effective procedure that, given a word in a finitely presented group, will decide whether the element represented by the word is the identity element of the group. In 1970, Yuri Matiyasevich proved (using results of Julia Robinson) Matiyasevich's theorem, which implies that Hilbert's tenth problem has no effective solution; this problem asked whether there is an effective procedure to decide whether a Diophantine equation over the integers has a solution in the integers. The list of undecidable problems gives additional examples of problems with no computable solution.
The study of which mathematical constructions can be effectively performed is sometimes called recursive mathematics; the Handbook of Recursive Mathematics (Ershov et al. 1998) covers many of the known results in this field.

Turing computability

The main form of computability studied in recursion theory was introduced by Turing (1936). A set of natural numbers is said to be a computable set (also called a decidable, recursive, or Turing computable set) if there is a Turing machine that, given a number n, halts with output 1 if n is in the set and halts with output 0 if n is not in the set. A function f from the natural numbers to themselves is a recursive or (Turing) computable function if there is a Turing machine that, on input n, halts and returns output f(n). The use of Turing machines here is not necessary; there are many other models of computation that have the same computing power as Turing machines; for example the μ-recursive functions obtained from primitive recursion and the μ operator.
The terminology for recursive functions and sets is not completely standardized. The definition in terms of μ-recursive functions as well as a different definition of rekursiv functions by Gödel led to the traditional name recursive for sets and functions computable by a Turing machine. The word decidable stems from the German word Entscheidungsproblem which was used in the original papers of Turing and others. In contemporary use, the term "computable function" has various definitions: according to Cutland (1980), it is a partial recursive function (which can be undefined for some inputs), while according to Soare (1987) it is a total recursive (equivalently, general recursive) function. This article follows the second of these conventions. Soare (1996) gives additional comments about the terminology.
Not every set of natural numbers is computable. The halting problem, which is the set of (descriptions of) Turing machines that halt on input 0, is a well-known example of a noncomputable set. The existence of many noncomputable sets follows from the facts that there are only countably many Turing machines, and thus only countably many computable sets, but there are uncountably many sets of natural numbers.
Although the Halting problem is not computable, it is possible to simulate program execution and produce an infinite list of the programs that do halt. Thus the halting problem is an example of a recursively enumerable set, which is a set that can be enumerated by a Turing machine (other terms for recursively enumerable include computably enumerable and semidecidable). Equivalently, a set is recursively enumerable if and only if it is the range of some computable function. The recursively enumerable sets, although not decidable in general, have been studied in detail in recursion theory.

Areas of research

Beginning with the theory of recursive sets and functions described above, the field of recursion theory has grown to include the study of many closely related topics. These are not independent areas of research: each of these areas draws ideas and results from the others, and most recursion theorists are familiar with the majority of them.

Relative computability and the Turing degrees

Recursion theory in mathematical logic has traditionally focused on relative computability, a generalization of Turing computability defined using oracle Turing machines, introduced by Turing (1939). An oracle Turing machine is a hypothetical device which, in addition to performing the actions of a regular Turing machine, is able to ask questions of an oracle, which is a particular set of natural numbers. The oracle machine may only ask questions of the form "Is n in the oracle set?". Each question will be immediately answered correctly, even if the oracle set is not computable. Thus an oracle machine with a noncomputable oracle will be able to compute sets that are not computable without an oracle.
Informally, a set of natural numbers A is Turing reducible to a set B if there is an oracle machine that correctly tells whether numbers are in A when run with B as the oracle set (in this case, the set A is also said to be (relatively) computable from B and recursive in B). If a set A is Turing reducible to a set B and B is Turing reducible to A then the sets are said to have the same Turing degree (also called degree of unsolvability). The Turing degree of a set gives a precise measure of how uncomputable the set is.
The natural examples of sets that are not computable, including many different sets that encode variants of the halting problem, have two properties in common:
  1. They are recursively enumerable, and
  2. Each can be translated into any other via a many-one reduction. That is, given such sets A and B, there is a total computable function f such that A = {x : f(x) ∈ B}. These sets are said to be many-one equivalent (or m-equivalent).
Many-one reductions are "stronger" than Turing reductions: if a set A is many-one reducible to a set B, then A is Turing reducible to B, but the converse does not always hold. Although the natural examples of noncomputable sets are all many-one equivalent, it is possible to construct recursively enumerable sets A and B such that A is Turing reducible to B but not many-one reducible to B. It can be shown that every recursively enumerable set is many-one reducible to the halting problem, and thus the halting problem is the most complicated recursively enumerable set with respect to many-one reducibility and with respect to Turing reducibility. Post (1944) asked whether every recursively enumerable set is either computable or Turing equivalent to the halting problem, that is, whether there is no recursively enumerable set with a Turing degree intermediate between those two.
As intermediate results, Post defined natural types of recursively enumerable sets like the simple, hypersimple and hyperhypersimple sets. Post showed that these sets are strictly between the computable sets and the halting problem with respect to many-one reducibility. Post also showed that some of them are strictly intermediate under other reducibility notions stronger than Turing reducibility. But Post left open the main problem of the existence of recursively enumerable sets of intermediate Turing degree; this problem became known as Post's problem. After ten years, Kleene and Post showed in 1954 that there are intermediate Turing degrees between those of the computable sets and the halting problem, but they failed to show that any of these degrees contains a recursively enumerable set. Very soon after this, Friedberg and Muchnik independently solved Post's problem by establishing the existence of recursively enumerable sets of intermediate degree. This groundbreaking result opened a wide study of the Turing degrees of the recursively enumerable sets which turned out to possess a very complicated and non-trivial structure.
There are uncountably many sets that are not recursively enumerable, and the investigation of the Turing degrees of all sets is as central in recursion theory as the investigation of the recursively enumerable Turing degrees. Many degrees with special properties were constructed: hyperimmune-free degrees where every function computable relative to that degree is majorized by a (unrelativized) computable function; high degrees relative to which one can compute a function f which dominates every computable function g in the sense that there is a constant c depending on g such that g(x) < f(x) for all x > c; random degrees containing algorithmically random sets; 1-generic degrees of 1-generic sets; and the degrees below the halting problem of limit-recursive sets.
The study of arbitrary (not necessarily recursively enumerable) Turing degrees involves the study of the Turing jump. Given a set A, the Turing jump of A is a set of natural numbers encoding a solution to the halting problem for oracle Turing machines running with oracle A. The Turing jump of any set is always of higher Turing degree than the original set, and a theorem of Friedburg shows that any set that computes the Halting problem can be obtained as the Turing jump of another set. Post's theorem establishes a close relationship between the Turing jump operation and the arithmetical hierarchy, which is a classification of certain subsets of the natural numbers based on their definability in arithmetic.
Much recent research on Turing degrees has focused on the overall structure of the set of Turing degrees and the set of Turing degrees containing recursively enumerable sets. A deep theorem of Shore and Slaman (1999) states that the function mapping a degree x to the degree of its Turing jump is definable in the partial order of the Turing degrees. A recent survey by Ambos-Spies and Fejer (2006) gives an overview of this research and its historical progression.

Other reducibilities

An ongoing area of research in recursion theory studies reducibility relations other than Turing reducibility. Post (1944) introduced several strong reducibilities, so named because they imply truth-table reducibility. A Turing machine implementing a strong reducibility will compute a total function regardless of which oracle it is presented with. Weak reducibilities are those where a reduction process may not terminate for all oracles; Turing reducibility is one example.
The strong reducibilities include:
One-one reducibility
A is one-one reducible (or 1-reducible) to B if there is a total computable injective function f such that each n is in A if and only if f(n) is in B.
Many-one reducibility
This is essentially one-one reducibility without the constraint that f be injective. A is many-one reducible (or m-reducible) to B if there is a total computable function f such that each n is in A if and only if f(n) is in B.
Truth-table reducibility
A is truth-table reducible to B if A is Turing reducible to B via an oracle Turing machine that computes a total function regardless of the oracle it is given. Because of compactness of Cantor space, this is equivalent to saying that the reduction presents a single list of questions (depending only on the input) to the oracle simultaneously, and then having seen their answers is able to produce an output without asking additional questions regardless of the oracle's answer to the initial queries. Many variants of truth-table reducibility have also been studied.
Further reducibilities (positive, disjunctive, conjunctive, linear and their weak and bounded versions) are discussed in the article Reduction (recursion theory).
The major research on strong reducibilities has been to compare their theories, both for the class of all recursively enumerable sets as well as for the class of all subsets of the natural numbers. Furthermore, the relations between the reducibilities has been studied. For example, it is known that every Turing degree is either a truth-table degree or is the union of infinitely many truth-table degrees.
Reducibilities weaker than Turing reducibility (that is, reducibilities that are implied by Turing reducibility) have also been studied. The most well known are arithmetical reducibility and hyperarithmetical reducibility. These reducibilities are closely connected to definability over the standard model of arithmetic.

Rice's theorem and the arithmetical hierarchy

Rice showed that for every nontrivial class C (which contains some but not all r.e. sets) the index set E = {e: the eth r.e. set We is in C} has the property that either the halting problem or its complement is many-one reducible to E, that is, can be mapped using a many-one reduction to E (see Rice's theorem for more detail). But, many of these index sets are even more complicated than the halting problem. These type of sets can be classified using the arithmetical hierarchy. For example, the index set FIN of class of all finite sets is on the level Σ2, the index set REC of the class of all recursive sets is on the level Σ3, the index set COFIN of all cofinite sets is also on the level Σ3 and the index set COMP of the class of all Turing-complete sets Σ4. These hierarchy levels are defined inductively, Σn+1 contains just all sets which are recursively enumerable relative to Σn; Σ1 contains the recursively enumerable sets. The index sets given here are even complete for their levels, that is, all the sets in these levels can be many-one reduced to the given index sets.

Reverse mathematics

The program of reverse mathematics asks which set-existence axioms are necessary to prove particular theorems of mathematics in subsystems of second-order arithmetic. This study was initiated by Harvey Friedman and was studied in detail by Stephen Simpson and others; Simpson (1999) gives a detailed discussion of the program. The set-existence axioms in question correspond informally to axioms saying that the powerset of the natural numbers is closed under various reducibility notions. The weakest such axiom studied in reverse mathematics is recursive comprehension, which states that the powerset of the naturals is closed under Turing reducibility.

Numberings

A numbering is an enumeration of functions; it has two parameters, e and x and outputs the value of the e-th function in the numbering on the input x. Numberings can be partial-recursive although some of its members are total recursive, that is, computable functions. Admissible numberings are those into which all others can be translated. A Friedberg numbering (named after its discoverer) is a one-one numbering of all partial-recursive functions; it is necessarily not an admissible numbering. Later research dealt also with numberings of other classes like classes of recursively enumerable sets. Goncharov discovered for example a class of recursively enumerable sets for which the numberings fall into exactly two classes with respect to recursive isomorphisms.

The priority method

For further explanation, see the section Post's problem and the priority method in the article Turing degree.
Post's problem was solved with a method called the priority method; a proof using this method is called a priority argument. This method is primarily used to construct recursively enumerable sets with particular properties. To use this method, the desired properties of the set to be constructed are broken up into an infinite list of goals, known as requirements, so that satisfying all the requirements will cause the set constructed to have the desired properties. Each requirement is assigned to a natural number representing the priority of the requirement; so 0 is assigned to the most important priority, 1 to the second most important, and so on. The set is then constructed in stages, each stage attempting to satisfy one of more of the requirements by either adding numbers to the set or banning numbers from the set so that the final set will satisfy the requirement. It may happen that satisfying one requirement will cause another to become unsatisfied; the priority order is used to decide what to do in such an event.
Priority arguments have been employed to solve many problems in recursion theory, and have been classified into a hierarchy based on their complexity (Soare 1987). Because complex priority arguments can be technical and difficult to follow, it has traditionally been considered desirable to prove results without priority arguments, or to see if results proved with priority arguments can also be proved without them. For example, Kummer published a paper on a proof for the existence of Friedberg numberings without using the priority method.

The lattice of recursively enumerable sets

When Post defined the notion of a simple set as an r.e. set with an infinite complement not containing any infinite r.e. set, he started to study the structure of the recursively enumerable sets under inclusion. This lattice became a well-studied structure. Recursive sets can be defined in this structure by the basic result that a set is recursive if and only if the set and its complement are both recursively enumerable. Infinite r.e. sets have always infinite recursive subsets; but on the other hand, simple sets exist but do not have a coinfinite recursive superset. Post (1944) introduced already hypersimple and hyperhypersimple sets; later maximal sets were constructed which are r.e. sets such that every r.e. superset is either a finite variant of the given maximal set or is co-finite. Post's original motivation in the study of this lattice was to find a structural notion such that every set which satisfies this property is neither in the Turing degree of the recursive sets nor in the Turing degree of the halting problem. Post did not find such a property and the solution to his problem applied priority methods instead; Harrington and Soare (1991) found eventually such a property.

Automorphism problems

Another important question is the existence of automorphisms in recursion-theoretic structures. One of these structures is that one of recursively enumerable sets under inclusion modulo finite difference; in this structure, A is below B if and only if the set difference B − A is finite. Maximal sets (as defined in the previous paragraph) have the property that they cannot be automorphic to non-maximal sets, that is, if there is an automorphism of the recursive enumerable sets under the structure just mentioned, then every maximal set is mapped to another maximal set. Soare (1974) showed that also the converse holds, that is, every two maximal sets are automorphic. So the maximal sets form an orbit, that is, every automorphism preserves maximality and any two maximal sets are transformed into each other by some automorphism. Harrington gave a further example of an automorphic property: that of the creative sets, the sets which are many-one equivalent to the halting problem.
Besides the lattice of recursively enumerable sets, automorphisms are also studied for the structure of the Turing degrees of all sets as well as for the structure of the Turing degrees of r.e. sets. In both cases, Cooper claims to have constructed nontrivial automorphisms which map some degrees to other degrees; this construction has, however, not been verified and some colleagues believe that the construction contains errors and that the question of whether there is a nontrivial automorphism of the Turing degrees is still one of the main unsolved questions in this area (Slaman and Woodin 1986, Ambos-Spies and Fejer 2006).

Kolmogorov complexity

The field of Kolmogorov complexity and algorithmic randomness was developed during the 1960s and 1970s by Chaitin, Kolmogorov, Levin, Martin-Löf and Solomonoff (the names are given here in alphabetical order; much of the research was independent, and the unity of the concept of randomness was not understood at the time). The main idea is to consider a universal Turing machine U and to measure the complexity of a number (or string) x as the length of the shortest input p such that U(p) outputs x. This approach revolutionized earlier ways to determine when an infinite sequence (equivalently, characteristic function of a subset of the natural numbers) is random or not by invoking a notion of randomness for finite objects. Kolmogorov complexity became not only a subject of independent study but is also applied to other subjects as a tool for obtaining proofs. There are still many open problems in this area. For that reason, a recent research conference in this area was held in January 2007[3] and a list of open problems[4] is maintained by Joseph Miller and Andre Nies.

Frequency computation

This branch of recursion theory analyzed the following question: For fixed m and n with 0 < m < n, for which functions A is it possible to compute for any different n inputs x1x2, ..., xn a tuple of n numbers y1,y2,...,yn such that at least m of the equations A(xk) = yk are true. Such sets are known as (mn)-recursive sets. The first major result in this branch of Recursion Theory is Trakhtenbrot's result that a set is computable if it is (mn)-recursive for some mn with 2m > n. On the other hand, Jockusch's semirecursive sets (which were already known informally before Jockusch introduced them 1968) are examples of a set which is (mn)-recursive if and only if 2m < n + 1. There are uncountably many of these sets and also some recursively enumerable but noncomputable sets of this type. Later, Degtev established a hierarchy of recursively enumerable sets that are (1, n + 1)-recursive but not (1, n)-recursive. After a long phase of research by Russian scientists, this subject became repopularized in the west by Beigel's thesis on bounded queries, which linked frequency computation to the above mentioned bounded reducibilities and other related notions. One of the major results was Kummer's Cardinality Theory which states that a set A is computable if and only if there is an n such that some algorithm enumerates for each tuple of n different numbers up to n many possible choices of the cardinality of this set of n numbers intersected with A; these choices must contain the true cardinality but leave out at least one false one.

Inductive inference

This is the recursion-theoretic branch of learning theory. It is based on Gold's model of learning in the limit from 1967 and has developed since then more and more models of learning. The general scenario is the following: Given a class S of computable functions, is there a learner (that is, recursive functional) which outputs for any input of the form (f(0),f(1),...,f(n)) a hypothesis. A learner M learns a function f if almost all hypotheses are the same index e of f with respect to a previously agreed on acceptable numbering of all computable functions; M learns S if M learns every f in S. Basic results are that all recursively enumerable classes of functions are learnable while the class REC of all computable functions is not learnable. Many related models have been considered and also the learning of classes of recursively enumerable sets from positive data is a topic studied from Gold's pioneering paper in 1967 onwards.

Generalizations of Turing computability

Recursion theory includes the study of generalized notions of this field such as arithmetic reducibility, hyperarithmetical reducibility and α-recursion theory, as described by Sacks (1990). These generalized notions include reducibilities that cannot be executed by Turing machines but are nevertheless natural generalizations of Turing reducibility. These studies include approaches to investigate the analytical hierarchy which differs from the arithmetical hierarchy by permitting quantification over sets of natural numbers in addition to quantification over individual numbers. These areas are linked to the theories of well-orderings and trees; for example the set of all indices of recursive (nonbinary) trees without infinite branches is complete for level \Pi^1_1 of the analytical hierarchy. Both Turing reducibility and hyperarithmetical reducibility are important in the field of effective descriptive set theory. The even more general notion of degrees of constructibility is studied in set theory.

Continuous computability theory

Computability theory for digital computation is well developed. Computability theory is less well developed for analog computation that occurs in analog computers, analog signal processing, analog electronics, neural networks and continuous-time control theory, modelled by differential equations and continuous dynamical systems (Orponen 1997; Moore 1996).

Relationships between definability, proof and computability

There are close relationships between the Turing degree of a set of natural numbers and the difficulty (in terms of the arithmetical hierarchy) of defining that set using a first-order formula. One such relationship is made precise by Post's theorem. A weaker relationship was demonstrated by Kurt Gödel in the proofs of his completeness theorem and incompleteness theorems. Gödel's proofs show that the set of logical consequences of an effective first-order theory is a recursively enumerable set, and that if the theory is strong enough this set will be uncomputable. Similarly, Tarski's indefinability theorem can be interpreted both in terms of definability and in terms of computability.
Recursion theory is also linked to second order arithmetic, a formal theory of natural numbers and sets of natural numbers. The fact that certain sets are computable or relatively computable often implies that these sets can be defined in weak subsystems of second order arithmetic. The program of reverse mathematics uses these subsystems to measure the noncomputability inherent in well known mathematical theorems. Simpson (1999) discusses many aspects of second-order arithmetic and reverse mathematics.
The field of proof theory includes the study of second-order arithmetic and Peano arithmetic, as well as formal theories of the natural numbers weaker than Peano arithmetic. One method of classifying the strength of these weak systems is by characterizing which computable functions the system can prove to be total (see Fairtlough and Wainer (1998)). For example, in primitive recursive arithmetic any computable function that is provably total is actually primitive recursive, while Peano arithmetic proves that functions like the Ackerman function, which are not primitive recursive, are total. Not every total computable function is provably total in Peano arithmetic, however; an example of such a function is provided by Goodstein's theorem.

Name of the subject

The field of mathematical logic dealing with computability and its generalizations has been called "recursion theory" since its early days. Robert I. Soare, a prominent researcher in the field, has proposed (Soare 1996) that the field should be called "computability theory" instead. He argues that Turing's terminology using the word "computable" is more natural and more widely understood than the terminology using the word "recursive" introduced by Kleene. Many contemporary researchers have begun to use this alternate terminology.[5] These researchers also use terminology such as partial computable function and computably enumerable (c.e.) set instead of partial recursive function and recursively enumerable (r.e.) set. Not all researchers have been convinced, however, as explained by Fortnow[6] and Simpson.[7] Some commentators argue that both the names recursion theory and computability theory fail to convey the fact that most of the objects studied in recursion theory are not computable.[8]
Rogers (1967) has suggested that a key property of recursion theory is that its results and structures should be invariant under computable bijections on the natural numbers (this suggestion draws on the ideas of the Erlangen program in geometry). The idea is that a computable bijection merely renames numbers in a set, rather than indicating any structure in the set, much as a rotation of the Euclidean plane does not change any geometric aspect of lines drawn on it. Since any two infinite computable sets are linked by a computable bijection, this proposal identifies all the infinite computable sets (the finite computable sets are viewed as trivial). According to Rogers, the sets of interest in recursion theory are the noncomputable sets, partitioned into equivalence classes by computable bijections of the natural numbers.

Professional organizations

The main professional organization for recursion theory is the Association for Symbolic Logic, which holds several research conferences each year. The interdisciplinary research Association Computability in Europe (CiE) also organizes a series of annual conferences. CiE 2012 will be the Turing Centenary Conference, held in Cambridge as part of the Alan Turing Year.

Wednesday, 2 October 2013

Computability theory

Computability theory

From Wikipedia, the free encyclopedia
Jump to: navigation, search
Computability theory, also called recursion theory, is a branch of mathematical logic, of computer science, and of the theory of computation that originated in the 1930s with the study of computable functions and Turing degrees.
The basic questions addressed by recursion theory are "What does it mean for a function on the natural numbers to be computable?" and "How can noncomputable functions be classified into a hierarchy based on their level of noncomputability?". The answers to these questions have led to a rich theory that is still being actively researched. The field has since grown to include the study of generalized computability and definability. In these areas, recursion theory overlaps with proof theory and effective descriptive set theory.
Arguably, a child of recursion theory is complexity theory that concentrates on the complexity of decidable problems rather than proves undecidable problems. Both theories share the same tool, namely a Turing machine. Remarkably, the invention of the central combinatorial object of recursion theory, namely the Universal Turing Machine, pre-dates and pre-determines the invention of modern computers.
Another reason for the area being quite active these days is the celebrated Higman's embedding theorem that provides a link between recursion theory and group theory.
Recursion theorists in mathematical logic often study the theory of relative computability, reducibility notions and degree structures described in this article. This contrasts with the theory of subrecursive hierarchies, formal methods and formal languages that is common in the study of computability theory in computer science. There is considerable overlap in knowledge and methods between these two research communities, however, and no firm line can be drawn between them.

History of computing hardware

History of computing hardware

First generation (mechanical/electromechanical) Calculators Pascal's calculator, Arithmometer, Difference engine
Programmable devices Jacquard loom, Analytical engine, Harvard Mark I, Z3
Second generation (vacuum tubes) Calculators Atanasoff–Berry Computer, IBM 604, UNIVAC 60, UNIVAC 120
Programmable devices Colossus, ENIAC, Manchester Small-Scale Experimental Machine, EDSAC, Manchester Mark 1, Ferranti Pegasus, Ferranti Mercury, CSIRAC, EDVAC, UNIVAC I, IBM 701, IBM 702, IBM 650, Z22
Third generation (discrete transistors and SSI, MSI, LSI integrated circuits) Mainframes IBM 7090, IBM 7080, IBM System/360, BUNCH
Minicomputer PDP-8, PDP-11, IBM System/32, IBM System/36
Fourth generation (VLSI integrated circuits) Minicomputer VAX, IBM System i
4-bit microcomputer Intel 4004, Intel 4040
8-bit microcomputer Intel 8008, Intel 8080, Motorola 6800, Motorola 6809, MOS Technology 6502, Zilog Z80
16-bit microcomputer Intel 8088, Zilog Z8000, WDC 65816/65802
32-bit microcomputer Intel 80386, Pentium, Motorola 68000, ARM architecture
64-bit microcomputer[59] Alpha, MIPS, PA-RISC, PowerPC, SPARC, x86-64
Embedded computer Intel 8048, Intel 8051
Personal computer Desktop computer, Home computer, Laptop computer, Personal digital assistant (PDA), Portable computer, Tablet PC, Wearable computer
Theoretical/experimental Quantum computer, Chemical computer, DNA computing, Optical computer, Spintronics based computer

Other hardware topics

Peripheral device (input/output) Input Mouse, keyboard, joystick, image scanner, webcam, graphics tablet, microphone
Output Monitor, printer, loudspeaker
Both Floppy disk drive, hard disk drive, optical disc drive, teleprinter
Computer busses Short range RS-232, SCSI, PCI, USB
Long range (computer networking) Ethernet, ATM, FDDI

Software

Software refers to parts of the computer which do not have a material form, such as programs, data, protocols, etc. When software is stored in hardware that cannot easily be modified (such as BIOS ROM in an IBM PC compatible), it is sometimes called “firmware.”
Operating system Unix and BSD UNIX System V, IBM AIX, HP-UX, Solaris (SunOS), IRIX, List of BSD operating systems
GNU/Linux List of Linux distributions, Comparison of Linux distributions
Microsoft Windows Windows 95, Windows 98, Windows NT, Windows 2000, Windows Me, Windows XP, Windows Vista, Windows 7, Windows 8
DOS 86-DOS (QDOS), IBM PC DOS, MS-DOS, DR-DOS, FreeDOS
Mac OS Mac OS classic, Mac OS X
Embedded and real-time List of embedded operating systems
Experimental Amoeba, Oberon/Bluebottle, Plan 9 from Bell Labs
Library Multimedia DirectX, OpenGL, OpenAL
Programming library C standard library, Standard Template Library
Data Protocol TCP/IP, Kermit, FTP, HTTP, SMTP
File format HTML, XML, JPEG, MPEG, PNG
User interface Graphical user interface (WIMP) Microsoft Windows, GNOME, KDE, QNX Photon, CDE, GEM, Aqua
Text-based user interface Command-line interface, Text user interface
Application Office suite Word processing, Desktop publishing, Presentation program, Database management system, Scheduling & Time management, Spreadsheet, Accounting software
Internet Access Browser, E-mail client, Web server, Mail transfer agent, Instant messaging
Design and manufacturing Computer-aided design, Computer-aided manufacturing, Plant management, Robotic manufacturing, Supply chain management
Graphics Raster graphics editor, Vector graphics editor, 3D modeler, Animation editor, 3D computer graphics, Video editing, Image processing
Audio Digital audio editor, Audio playback, Mixing, Audio synthesis, Computer music
Software engineering Compiler, Assembler, Interpreter, Debugger, Text editor, Integrated development environment, Software performance analysis, Revision control, Software configuration management
Educational Edutainment, Educational game, Serious game, Flight simulator
Games Strategy, Arcade, Puzzle, Simulation, First-person shooter, Platform, Massively multiplayer, Interactive fiction
Misc Artificial intelligence, Antivirus software, Malware scanner, Installer/Package management systems, File manager

Languages

Misconceptions

Misconceptions

Women as computers in NACA High Speed Flight Station "Computer Room"
A computer does not need to be electronic, nor even have a processor, nor RAM, nor even a hard disk. While popular usage of the word “computer” is synonymous with a personal electronic computer, the modern[57] definition of a computer is literally “A device that computes, especially a programmable [usually] electronic machine that performs high-speed mathematical or logical operations or that assembles, stores, correlates, or otherwise processes information.”[58] Any device which processes information qualifies as a computer, especially if the processing is purposeful.

Computer architecture paradigms

Computer architecture paradigms

There are many types of computer architectures:
The quantum computer architecture holds the most promise to revolutionize computing.[56]
Logic gates are a common abstraction which can apply to most of the above digital or analog paradigms.
The ability to store and execute lists of instructions called programs makes computers extremely versatile, distinguishing them from calculators. The Church–Turing thesis is a mathematical statement of this versatility: any computer with a minimum capability (being Turing-complete) is, in principle, capable of performing the same tasks that any other computer can perform. Therefore any type of computer (netbook, supercomputer, cellular automaton, etc.) is able to perform the same computational tasks, given enough time and storage capacity.

Networking and the Internet

Networking and the Internet

Visualization of a portion of the routes on the Internet.
Computers have been used to coordinate information between multiple locations since the 1950s. The U.S. military's SAGE system was the first large-scale example of such a system, which led to a number of special-purpose commercial systems such as Sabre.[54]
In the 1970s, computer engineers at research institutions throughout the United States began to link their computers together using telecommunications technology. The effort was funded by ARPA (now DARPA), and the computer network that resulted was called the ARPANET.[55] The technologies that made the Arpanet possible spread and evolved.
In time, the network spread beyond academic and military institutions and became known as the Internet. The emergence of networking involved a redefinition of the nature and boundaries of the computer. Computer operating systems and applications were modified to include the ability to define and access the resources of other computers on the network, such as peripheral devices, stored information, and the like, as extensions of the resources of an individual computer. Initially these facilities were available primarily to people working in high-tech environments, but in the 1990s the spread of applications like e-mail and the World Wide Web, combined with the development of cheap, fast networking technologies like Ethernet and ADSL saw computer networking become almost ubiquitous. In fact, the number of computers that are networked is growing phenomenally. A very large proportion of personal computers regularly connect to the Internet to communicate and receive information. “Wireless” networking, often utilizing mobile phone networks, has meant networking is becoming increasingly ubiquitous even in mobile computing environments.

Multiprocessing

Multiprocessing

Cray designed many supercomputers that used multiprocessing heavily.
Some computers are designed to distribute their work across several CPUs in a multiprocessing configuration, a technique once employed only in large and powerful machines such as supercomputers, mainframe computers and servers. Multiprocessor and multi-core (multiple CPUs on a single integrated circuit) personal and laptop computers are now widely available, and are being increasingly used in lower-end markets as a result.
Supercomputers in particular often have highly unique architectures that differ significantly from the basic stored-program architecture and from general purpose computers.[53] They often feature thousands of CPUs, customized high-speed interconnects, and specialized computing hardware. Such designs tend to be useful only for specialized tasks due to the large scale of program organization required to successfully utilize most of the available resources at once. Supercomputers usually see usage in large-scale simulation, graphics rendering, and cryptography applications, as well as with other so-called “embarrassingly parallel” tasks.

Multitasking

Multitasking

While a computer may be viewed as running one gigantic program stored in its main memory, in some systems it is necessary to give the appearance of running several programs simultaneously. This is achieved by multitasking i.e. having the computer switch rapidly between running each program in turn.[51]
One means by which this is done is with a special signal called an interrupt, which can periodically cause the computer to stop executing instructions where it was and do something else instead. By remembering where it was executing prior to the interrupt, the computer can return to that task later. If several programs are running “at the same time,” then the interrupt generator might be causing several hundred interrupts per second, causing a program switch each time. Since modern computers typically execute instructions several orders of magnitude faster than human perception, it may appear that many programs are running at the same time even though only one is ever executing in any given instant. This method of multitasking is sometimes termed “time-sharing” since each program is allocated a “slice” of time in turn.[52]
Before the era of cheap computers, the principal use for multitasking was to allow many people to share the same computer.
Seemingly, multitasking would cause a computer that is switching between several programs to run more slowly, in direct proportion to the number of programs it is running, but most programs spend much of their time waiting for slow input/output devices to complete their tasks. If a program is waiting for the user to click on the mouse or press a key on the keyboard, then it will not take a “time slice” until the event it is waiting for has occurred. This frees up time for other programs to execute so that many programs may be run simultaneously without unacceptable speed loss.

Input/output (I/O)

Input/output (I/O)

Hard disk drives are common storage devices used with computers.
I/O is the means by which a computer exchanges information with the outside world.[49] Devices that provide input or output to the computer are called peripherals.[50] On a typical personal computer, peripherals include input devices like the keyboard and mouse, and output devices such as the display and printer. Hard disk drives, floppy disk drives and optical disc drives serve as both input and output devices. Computer networking is another form of I/O.
I/O devices are often complex computers in their own right, with their own CPU and memory. A graphics processing unit might contain fifty or more tiny computers that perform the calculations necessary to display 3D graphics.[citation needed] Modern desktop computers contain many smaller computers that assist the main CPU in performing I/O.

Memory

Memory

Magnetic core memory was the computer memory of choice throughout the 1960s, until it was replaced by semiconductor memory.
A computer's memory can be viewed as a list of cells into which numbers can be placed or read. Each cell has a numbered “address” and can store a single number. The computer can be instructed to “put the number 123 into the cell numbered 1357” or to “add the number that is in cell 1357 to the number that is in cell 2468 and put the answer into cell 1595.” The information stored in memory may represent practically anything. Letters, numbers, even computer instructions can be placed into memory with equal ease. Since the CPU does not differentiate between different types of information, it is the software's responsibility to give significance to what the memory sees as nothing but a series of numbers.
In almost all modern computers, each memory cell is set up to store binary numbers in groups of eight bits (called a byte). Each byte is able to represent 256 different numbers (2^8 = 256); either from 0 to 255 or −128 to +127. To store larger numbers, several consecutive bytes may be used (typically, two, four or eight). When negative numbers are required, they are usually stored in two's complement notation. Other arrangements are possible, but are usually not seen outside of specialized applications or historical contexts. A computer can store any kind of information in memory if it can be represented numerically. Modern computers have billions or even trillions of bytes of memory.
The CPU contains a special set of memory cells called registers that can be read and written to much more rapidly than the main memory area. There are typically between two and one hundred registers depending on the type of CPU. Registers are used for the most frequently needed data items to avoid having to access main memory every time data is needed. As data is constantly being worked on, reducing the need to access main memory (which is often slow compared to the ALU and control units) greatly increases the computer's speed.
Computer main memory comes in two principal varieties: random-access memory or RAM and read-only memory or ROM. RAM can be read and written to anytime the CPU commands it, but ROM is preloaded with data and software that never changes, therefore the CPU can only read from it. ROM is typically used to store the computer's initial start-up instructions. In general, the contents of RAM are erased when the power to the computer is turned off, but ROM retains its data indefinitely. In a PC, the ROM contains a specialized program called the BIOS that orchestrates loading the computer's operating system from the hard disk drive into RAM whenever the computer is turned on or reset. In embedded computers, which frequently do not have disk drives, all of the required software may be stored in ROM. Software stored in ROM is often called firmware, because it is notionally more like hardware than software. Flash memory blurs the distinction between ROM and RAM, as it retains its data when turned off but is also rewritable. It is typically much slower than conventional ROM and RAM however, so its use is restricted to applications where high speed is unnecessary.[48]
In more sophisticated computers there may be one or more RAM cache memories, which are slower than registers but faster than main memory. Generally computers with this sort of cache are designed to move frequently needed data into the cache automatically, often without the need for any intervention on the programmer's part.